

Surgical Technologies Theme

Professor David Jayne

Surgical Technologies

WS1: Precision & personalised surgery

To capitalize on 3 technologies revolutionizing surgical practice with the power to make precision and personalised surgery part of routine NHS care

WS2: Enhanced healing, limiting disability, and improving outcomes

To refine, validate, employ innovations addressing prevention, management, salvage treatment in patients with OA, fractures, and diabetic foot ulcer

Surgical Technologies

WS1: Precision & personalized surgery

Colorectal, Neurosurgery, HPB, Lung

WS2: Enhanced healing, limiting disability, improving outcomes

Orthopaedics, Vascular

Immersive technologies

VR models for robotics

Immersive solutions e.g. consent

Digital twins for planning& rehearsal

Nanotech

Photo & acoustically activated particles

Functionalised particles to penetrate biofilms

Robotics

Robotic colonoscopy:

Onboard imaging

Navigation

Machine learning

Orthopaedics

Biomarkers for cartilage regeneration

Implantable joint sensors

Decision analysis for new management pathways

Vascular

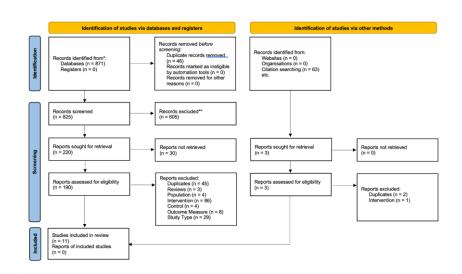
Diabetic foot:

Injectable fat scaffold

In-shoe sensing technology

Technology convergence

WS1: Precision and Personalised Surgery

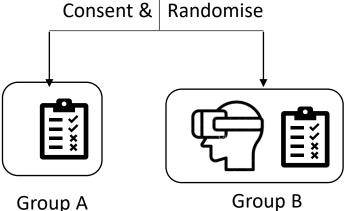


Mathew, Mushtaq, Bolton

Systematic review of XR for Surgery – completed

Generated 10 recommendations for future research:

- 1. Standardization of iVR Definition
- 2. Detailed Reporting of iVR Training Interventions
- 3. Conducting Larger Scale, Longitudinal Studies
- 4. In-depth Analysis of Experience Surveys
- 5. Investigation of Learning Curves
- 6. Integration with Other Training Methods
- 7. Impact of iVR on Teamwork & Communication Skills
- 8. Exploration of Individual Differences
- 9. Cost-Benefit Analysis
- 10.Effect of iVR on Patient Outcomes



Mathews, Mushtaq, Bolton

Feasibility study

 Preoperative patient understanding

(n = 10)

(n = 14)

Brain Leap

- Randomised comparison
- 24 patients
- Patients diagnosed with intracranial tumour

Funding

 Centre for Neurosciences, LTHT (salary and equipment)

Mathews, Mushtaq, Bolton

VR to augment neurorehabilitation

RecoVR Reality

- Feasibility study
- 35 patients
- Traumatic brain injury or resection of brain tumour

Recruitment completed

- Acceptable to patients
- · Refinement of protocol
- Improved engagement in recovery

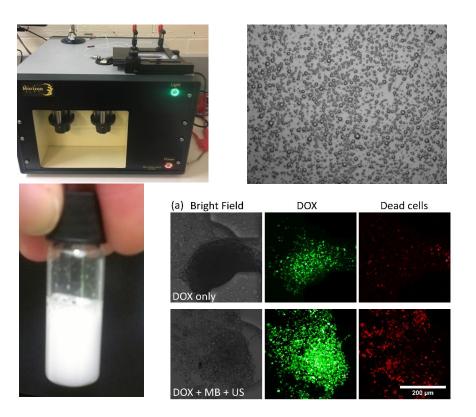
Funding

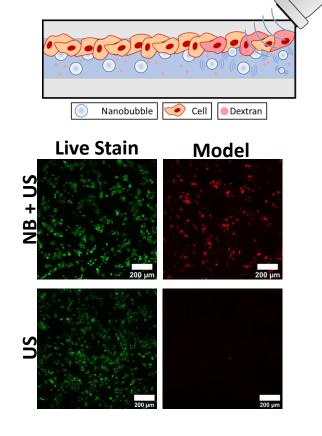
- NIHR Brain Injury MIC
- Industry partner SynchVR
- Leeds Hospital Charity

Mathews, Mushtaq, Bolton

Future directions

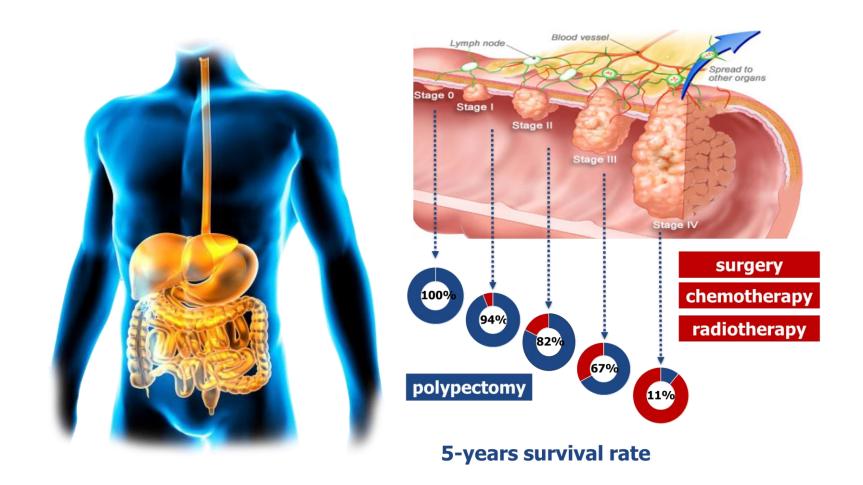
- RecoVR:A pragmatic clinical effectiveness evaluation in the NHS (target is NIHR EME): 1:1 unblinded RCT comparing VR augmented neurorehabilitation vs standard of care after neurotrauma or neurosurgery.
- Mechanistic sub-studies: Trial sample vs healthy controls wearing shielded VR headsets undergoing multi-parametric MRI and EMG sensors to map neuronal activity.
- 1. Brain Leap: A pragmatic clinical effectiveness evaluation in the NHS (NIHR RfPB): 1:1 unblinded RCT. MR enhanced consultation vs standard computer monitor for complex neurosurgical pathologies.


WS1: Nanotechnology

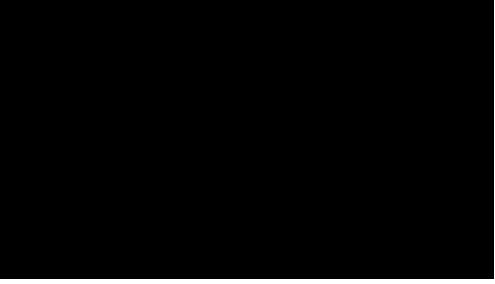

Evans, Quyn, Jayne

Colonic epithelium lined by protective biofilm

Aim: to develop liposomal technology to target/disrupt the

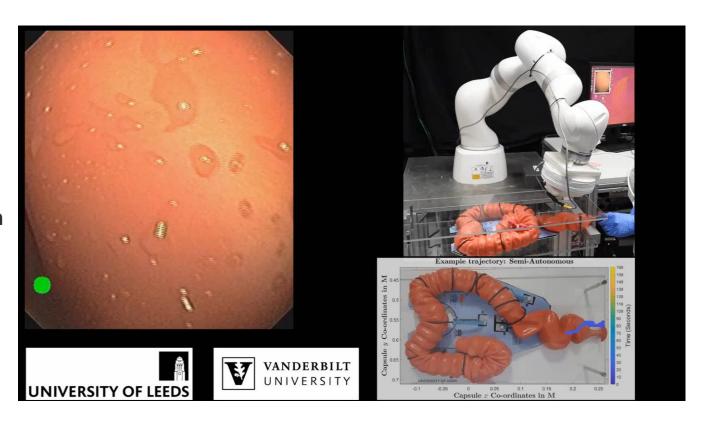

mucosal biofilm

WS1: Robotic colonoscopy


Valdastri, Chalmers

WS1: Robotic colonoscopy

Valdastri, Chalmers


- **Bainful**
- **©** Unintuitive
- **(2)** Instrument is expansive

WS1: Robotic colonoscopy

Valdastri, Chalmers

Average Time to Caecum: 4.28 min (10 users, 5 reps each, 100% success)

On board imaging and polyp detection; Al driven navigation VR training programme

WS2: Enhanced healing, limiting disability, and improving outcomes

WS2: Elective Othopaedics

Pandit, van Duren

ARK study

- Wearable sensors to monitor postop recovery following knee replacement
- 149/250 patients recruited
- Primary end point: Oxford Knee Score at 6 months
- Secondary: Functional, Pain, PROMS, KOOS, EQ-5D, Patient satisfaction, Healthcare resource utilisation

B Braun: BPM sensor

WS2: Elective Orthopaedics

Pandit, van Duren

iSMART

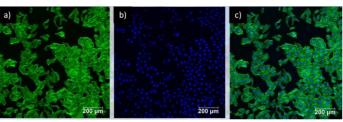
Implantable sensors for monitoring knee joint replacement

Medacta Int: £2.3M + £2M in-kind + £675L UoL match Regulatory approvals by Q4 2025; First-in-human Q2 2026

WS2: Trauma

Jha, Giannoudis

Bone adhesive for fracture fixation




Benefits

Reduce screws
Promote healing
Antimicrobial properties
Bone gap reduction
Laser and radio imaging

Cytotoxicity testing

Animal studies

Outputs

Patent filed 2022
New IP
Publications
Collaborations

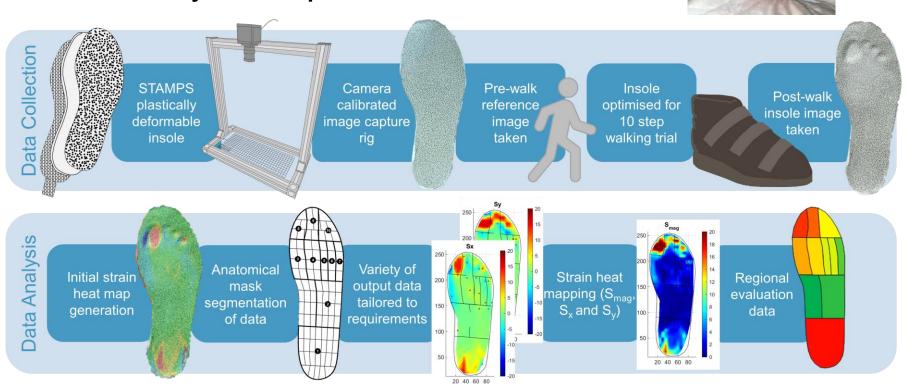

WS2: Trauma

Jha, Giannoudis

Green bone for hip defect restoration

Phase 1: original scaffolds industry proof-of-concept study

15 patient hip augmentation

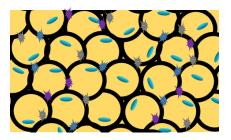

Phase 2: Laser drilled scaffolds IAA funding

Improved angiogenesis & osteogenesis

WS2: Diabetic Foot

Russell, Culmer

Strain analysis of plantar surface


Proof-of-concept study completed

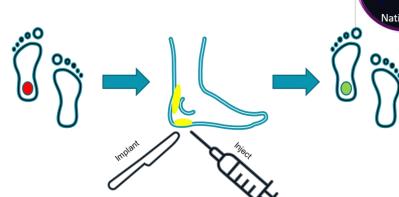
WS2: Diabetic Foot


Russell, Culmer

Decellularised fat scaffolds

Native adipose

Decellularised adipose



Benefits

Implant or inject
Restore local biomechanics
Encourage host-cell
infiltration
Reduce inflammation

SUCCESSFUL DECELLULARISATION

Long term functional regeneration